56 Heck operators
We 're seen before that for $\Delta(z)=\sum_{n=1}^{\infty}(n) q^{n}$ Ramanujan confected, and Model proved that

$$
\begin{aligned}
& z(n) \varepsilon(m)=\tau(n m) \quad \text { f }(n, m)=1 \quad \text { and } \\
& z\left(p^{r}\right) \tau(p)=z\left(p^{r+1}\right)+p^{\prime \prime} z\left(p^{r-1}\right)
\end{aligned}
$$

Heck who defred certan operators $T(n)$ aching on μ_{k} and showed that trey for a family of commuting opertors that ore Hemihan wit Petersson inner product. This imples using Linear algebre that the space μ_{k} hos a basis consing of
simultaneous eigenfoms $\forall \tau(n)$ and simultaneous eigerfoms $\forall \tau(n)$ and the eigenvalues of these forms intent the mulhplicate properties of the Heck operators that act on them.
Geneal setup
let $G \leq T=S L_{2}(\mathbb{Z})$, and
$G \subset K$, whee K a set of line frachonal trensfommanions (not recessony a gP) with the following properties
(1) G acts on K by mihplication

$$
\begin{aligned}
& \text { (2) } K G=G K=K \\
& \text { (3) }[K=G]<\infty-K K=\bigcup_{j=1}^{m} G \mu_{j} \\
& \mu_{j} \in K
\end{aligned}
$$

take $G=\Gamma=s c_{2}(\pi)$

$$
K=\mu(n)==\left\{m \in M_{2 \times 2}(\mathbb{k}) \mid \text { dat } m=n\right\}
$$

Clearly G acts on K on the right and on the left since f of $r \in g \in \mu(n)$ then $\operatorname{det}(\sigma g)=(\operatorname{det} \gamma)(\operatorname{dof} g)=\operatorname{det} g=\operatorname{det}(g \gamma)$

$$
=\cap .
$$

The rext Lemma gives an explicit set of reps and avo proves $[\mu(n)=\Gamma]<\infty$ -

Lemma 6-1 A sect of right coset reps for the action of $P S L_{2}(\mathbb{Z})$ on the set μ_{n} of of Lien frachoncl tran fomchovs represented by the set of elotinces $M(n)$ is gen by $Q=\left\{\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right) \left\lvert\, \begin{array}{cc}a d=n, d>0 \\ 0 \leq b<d\end{array}\right.\right\}$ ie $\quad \mu_{n}=U P S L_{2}(\pi) \gamma_{1}^{-}, \quad R=M_{n}=M(n)$

$$
\gamma_{j} \in \mathcal{O}
$$

$$
P_{S L} I_{2} \quad S L_{2} l^{\prime \prime}
$$

Prof. Let $\pm\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in \mu(n)$ be gives
Choose $x, y \in \mathbb{Z}$ such that $A x+C y=0$ and $(x, y)=1$ (Tan example toke $x=-c, y=A$ and duende $b \operatorname{gcd}(A, C)$)

Since $(x, y)=1 \quad \exists u, v \in \mathbb{Z}$ sit $u y-v x=1$ ie $\left(\begin{array}{cc}u & v \\ x & y\end{array}\right) \in S C_{2}(\mathbb{Z})$
Then $\left(\begin{array}{ll}u & V \\ x & y\end{array}\right)\left(\begin{array}{ll}A & B \\ c & D\end{array}\right)=\left(\begin{array}{ll}A^{\prime} & B^{\prime} \\ 0 & D^{\prime}\end{array}\right)$
Possibly by mulhplying on the left by

- I we con assume $A^{\prime}>0, D^{\prime}>0$.
(Note thy hue the sane sigh os $A^{\prime} D^{\prime}>0$
- Now choose integer gur with

$$
B^{\prime}=D^{\prime} q+r \quad, \quad 0 \leqslant r<D^{\prime}
$$

Then $\left(\begin{array}{cc}1 & -q \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}A^{\prime} & B^{\prime} \\ 0 & D^{\prime}\end{array}\right)=\left(\begin{array}{cc}A^{\prime} & r \\ 0 & D^{\prime}\end{array}\right) \in R$. since $\quad A^{\prime} D^{\prime}=n, \quad 0 \leqslant r<D, \quad D^{\prime}>0$.

Now suppose 2 ells $\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right),\left(\begin{array}{ll}a^{\prime} & b^{\prime} \\ 0 & d^{\prime}\end{array}\right) \in R$ cred in the sore coset ie $\exists\left(\begin{array}{ll}u & v \\ x & y\end{array}\right) \in S S_{2}(x)$ $s-t\left(\begin{array}{ll}u & v \\ x & y\end{array}\right)\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)=\left(\begin{array}{ll}a^{\prime} & b^{\prime} \\ 0 & d^{\prime}\end{array}\right)$
Then $a x+0 y=0 \Rightarrow x=0 \quad($ since $a \neq 0)$
Sine $\operatorname{det}\left(\begin{array}{ll}u & v \\ x & y\end{array}\right)=u y-v x=u y=1 \Rightarrow u=y=1 \quad($ or -1$)$
Bt then $u b+v d=b^{\prime}$ and $x b+y d=d^{\prime}$,
$\Rightarrow \quad \cdot b+v d=b^{\prime}$ and $\quad b 0+d=d^{\prime}$ Hence, $b \equiv b^{\prime} \bmod d$ and $d=d^{\prime}$

But both $b, b^{\prime}<d$ Hence $b=b^{\prime}$ os well since $d=d^{\prime}$ and $a d=a^{\prime} d^{\prime}$ we also hae $a=a^{\prime}$.

We now define the Hecke operators
Defn The nth Heckie operator $T_{k}(n)=T_{n}$, that act on the space of modeler forms of wt t is deferred by

$$
T_{k}(n) f==\left.n^{k / 2-1} \sum_{i-\in} f_{1}\right|_{k} ^{\gamma_{i}}
$$

whee $\left.f\right|_{k} \gamma=(\operatorname{det} \gamma)^{k / 2}(c z+d)^{-k} f(\gamma z)$
for $\quad \gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mu(n)$.

1) Remark (1) This deft is indep of choice of representahes. For, if $\left\{\sigma_{1}^{\prime}\right\}$ is another set of reps then $\gamma_{i}^{\prime}=\sigma_{i} \gamma_{i}$ for some $\sigma_{i} \in \Gamma$.

Then $\sum_{i} f\left|\gamma_{i}^{\prime}=\sum_{i} f\right| \sigma_{i} \gamma_{i}=\sum_{i} f \mid \gamma_{i}$ $f \mid \sigma_{\bar{F}}=f$ since $f \sec (p)$
(2) If $g=T_{k}(n) f$ and $f \in M_{k}(t)$ hen

$$
\text { so } g \mid \sigma=g \quad \forall \sigma \in \Gamma
$$

For, y hen

$$
\begin{aligned}
& g 1 \sigma=\left(T_{k}(n) f\right) \mid \sigma \\
& =\left(n^{k / 2-1} \sum_{T} f \mid \gamma_{i}\right) / \sigma \\
& =n^{k / 2-1} \sum_{i} f\left|\gamma_{i} \sigma=n^{k / 2-1} \sum_{i} \gamma_{i}\right| \gamma_{1}^{\prime} \\
& =f \mid T_{k}(n)=y
\end{aligned}
$$

since as rims our a set of reps $p^{M(n)}$ so does $\gamma_{1}^{\prime}=\gamma_{i} \sigma$ for a fixed $\sigma \in \Gamma$.
(3) We'll see shortly that in feet $g \in \mu_{k}$ (I) ie $\quad T(n)=\pi l_{k}(P) \longrightarrow \mu_{k}(P)$

Lie we show that $T_{k}(n)$ also preserves the holomo-phicity at ∞.
Using the explicit coset reps from Lemma 6.1 we will give the achon of $T_{t}(n)$ on the Fouñer coefs of f.

Prop 6.2 let $f(z)=\sum_{n=0}^{\infty} c(n) q^{n} \in \mu_{k}(\Gamma)$ and $g=T_{k}(m) f \quad$ Then $g(z)=\sum_{i=0}^{\infty} b(n) q^{n}$ Wi $b(n)= \begin{cases}\sum_{d i(m, n)} d^{k-1} c\left(\frac{m n}{d^{2}}\right) & \text { of } n \geq 1 \\ c(0) \sigma_{k-1}(m) & \text { if } n=0\end{cases}$
proof: $T_{k}(m) f=m^{k / 2-1} \sum_{a d=n} f\left[\begin{array}{ll}a & b \\ 0 & d\end{array}\right]$ $b \bmod d$ $d>0$

$$
\begin{aligned}
& =m^{k / 2-1} \sum_{a, b, d} d^{-k} f\left(\frac{a z+b}{d}\right) m^{k / 2} \\
& =m^{k-1} \sum_{a, b, d} d^{-k} \sum_{n=0}^{\infty} c(n) e^{2 \pi \pi n}\left(\frac{a z+b}{d}\right) \\
& =m^{k-1} \sum_{n=0}^{\infty} c(n) \sum_{a, d} d^{-k} e^{2 \pi n\left(\frac{a z}{d}\right)} \sum_{a=0}^{d-1} e^{2 \pi n\left(\frac{b}{d}\right)}
\end{aligned}
$$

But $\sum_{b=0}^{d-1} e^{2 \pi i n\left(\frac{b}{d}\right)}= \begin{cases}d & y d \ln \\ 0 & \text { otheninge }\end{cases}$

$$
\left.\binom{s_{i}=\sum_{b=0}^{d-1}\left(e^{\left.2 \pi \frac{2 \pi n}{d}\right)^{b}=1+r+\cdots+r^{d-1}}\right.}{r s=r+\cdots+r^{d}} \begin{array}{r}
(-r) s=1-r^{d} \\
=0 \\
\left(1+e^{2 \pi n / d}\right.
\end{array}\right)
$$

Hence we con drop all the n's except those of the form $n=d l$ for some l.
we get $T(m) f=m^{k-1} \sum_{l=0}^{\infty} \sum_{\substack{a d=m \\ a, d}} c(d l) d^{-k} \cdot d e^{2 \pi i l a z}$

$$
\begin{aligned}
& =\sum_{l=0}^{\infty} \sum_{\substack{a d=m \\
a, d}} c(d l)\left(\frac{m}{d}\right)^{k-1} e^{2 \pi r a l z} \\
& =\sum_{l=0}^{\infty} \sum_{a \mid m}^{a>0} c\left(l \frac{m}{a}\right) a^{k-1} q^{l a}
\end{aligned}
$$

coff of q^{0} in this sum cores from $l=0$ and then is equal to $c(0) \sum_{a \mid m} a^{k-1}$

$$
=c(0) \sigma_{k-1}(m)
$$

Coff of q^{\prime} cores from $l a=1$, hence $l=a=1$ and is just $c(m)$
For $n>2$, co of of q^{n} corves from terms l, a with $l a=n$ and a / m te $a \mid n$, and $a \mid m$ and $c\left(\frac{l m}{a}\right)=c\left(\frac{n m}{a^{2}}\right)$ Thus cod of q^{n} is $\sum_{a \mid(n, n)} c\left(\frac{n m}{a^{2}}\right) a^{k-1}$

These formulas also show
$\operatorname{cor} 6.3 \quad T_{k}(m)$ takes $\mu_{k}(T)$ to $\mu_{k}(t)$ and $S_{k}(\Gamma)$ to $S_{k}(T)$.
Cor 6-4 let $f \in \mu_{k}(T), f=\sum c(n) q^{n}$ p a prove, and $g=T_{p} f$
Then $g=\sum b(n) q^{n}$ with

$$
\begin{aligned}
& \therefore b(n)= \begin{cases}c(p n) & \text { f } p \nmid n \\
c(p n)+p^{k-1} c(n \mid p) \text { y } p \mid n\end{cases} \\
& T(n) f=n^{k / 2-1} \sum_{\substack{\sigma=\left(\begin{array}{ll}
a & b \\
0 & b \\
a d \\
b=n \\
b o d
\end{array}\right)}} f / \gamma=n^{k / 2-1} \sum_{\substack{a d=n \\
0 \leq b c d .}}(a d)^{k / 2} d^{-k} f\left(\frac{a z+b}{d}\right. \\
& \Omega=n^{-1} \sum_{a d=n} a^{k} \sum_{0 \leqslant b<d} f\left(\frac{a z+b}{d}\right) \text {. }
\end{aligned}
$$

Weill formally unite this as

$$
T_{n}=\frac{1}{n} \sum_{a d=n} a^{k} \sum_{b \operatorname{noc}}\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right) .
$$

The next thewem is at the neat of the mulhplicative relations sotisfled by the Toner coifs of egerfunchions of τ_{n}

Thm 6-5 For any $m, n>1$ we have

$$
T_{m} T_{n}=\sum_{d /(m, n)} d^{k-1} T_{m n}^{d^{2}}
$$

Before we give a proof of this chm let's look of sore of its corollaries

- Cor 6.6 The Heck operators commute $T_{e} T_{n} T_{m}=T_{n} T_{n}$
Pf. This iris immediate from the symmetry in n, m in *.
$\cos 6.7$ (a) $(n, n)=1$ then

$$
T_{m} T_{n}=T_{m n}
$$

(b) $T_{p r} T_{p}=T_{p^{r+1}}+p^{k-1} T_{p^{r-1}}$

Pf. (a) Obuvus from (*) since $d=(m, n)=1$
(b)

$$
\begin{gathered}
T_{p^{r}} T_{p}=\sum_{d \left\lvert\, \frac{\left.p^{r}, p\right)}{p}\right.} d^{k-1} T_{p^{r+1}}^{d^{2}} \\
=T_{p^{r+1}}+p^{k-1} T_{p^{r-1}} \\
d=1 \quad d=p .
\end{gathered}
$$

Next we look of an implication of The 6.5 and Prop 6.2 on the eigonudees and Ficoefs of an $f \in \mu_{k}(T)$ which is on eigorfonchin $\forall T_{m}$.
Prop 6.8. leta $=\sum a_{n} q_{f} \in M_{k}$ sech that $\forall m z l$ $\exists \lambda_{m} \in \mathbb{C}$ with $\quad T_{m} f=\lambda_{m} f, \begin{aligned} & \text { and is not a } \\ & \text { constant function. }\end{aligned}$
Then $a_{1} \neq 0$ and $a_{m}=\lambda_{m} a_{1}$
Proof $T_{m} f=\sum b_{n} q^{n}=\sum \lambda_{m} a_{n} q^{n}=\lambda_{m} f$
On the other hand Prop 6-1 gives

$$
\lambda_{m} a_{n}=b_{n}=\sum_{d /(m, n)} d^{k-1} a_{\frac{m n}{}}^{d^{2}}
$$

let $n=1$. Then $\lambda_{m} a_{1}=b_{1}=\sum_{d /(m, 1)} d^{k-1} a_{\frac{m n}{d^{2}}}$

$$
=a_{m}
$$

$\Rightarrow \lambda_{m} a_{1}=a_{m}$ Hence $a_{1} \neq 0$ since otrenize $a_{n}=0 \quad \forall m \geqslant 1$ ad $f \equiv a_{0}$
Rok (1)Prop 6.8 says that up to nomalizotion $\left(a_{1}=1\right)$, eignudens of f and foyer coifs if f are equal. If f is a simultereous eigerfan $\forall I_{m}$.

